
django-ostinato Documentation
Release 1.1

Andre Engelbrecht

August 26, 2015

Contents

1 Requirements 3

2 Introduction 5
2.1 The Demo Project . 5
2.2 ostinato.pages . 6
2.3 ostinato.statemachine . 12
2.4 ostinato.blog . 15
2.5 ostinato.contentfilters . 16

3 Indices and tables 19

i

ii

django-ostinato Documentation, Release 1.1

“In music, an ostinato (derived from Italian: “stubborn”, compare English: obstinate) is a motif or
phrase, which is persistently repeated in the same musical voice.”

—Wikipedia

Contents 1

http://en.wikipedia.org/wiki/Ostinato

django-ostinato Documentation, Release 1.1

2 Contents

CHAPTER 1

Requirements

• django >= 1.4.2

• django-mptt == 0.6.0

• django-appregister == 0.3.1

3

django-ostinato Documentation, Release 1.1

4 Chapter 1. Requirements

CHAPTER 2

Introduction

Django-ostinato is a collection of applications that aims to bring together some of the most common features expected
from a CMS.

Every feature is contained within a single ostinato app. This helps us to keep functionality focussed on the single
feature/task that the app is meant to provide

2.1 The Demo Project

Ostinato comes with a demo project that you can use to play around with the app. The test project uses zc.buildout,
which lets you install and run the entire demo, including all dependencies, in an isolated environment.

2.1.1 Setting up the demo project

After checking out or downloading the source, you will see the demoproject folder. There should be two files in
that folder bootstrap.py and buildout.cfg. The actual django project is in demoproject/src/odemo.

Lets build the project. To do so you bootstrap it using the python version of your choice.

python bootstrap.py or you could do, python2.6 bootstrap.py. Just remember that ostinato have not
been tested with versions lower than 2.6.

Ok, after the bootstrap, you will see there should now be a bin folder.

Now run: ./bin/buildout

This will start to download django, mptt, an any other dependecies required for the project to run.

2.1.2 Running the demo project

Once the buildout has been created, and is finished. A new file will be in the bin folder called odemo. This is
basically a wrapper for manage.py that ensures that the project is run within buildout, and not in the system.

So lets sync the database: ./bin/odemo syncdb

After the sync we can run the dev server: ./bin/odemo runserver

5

django-ostinato Documentation, Release 1.1

2.2 ostinato.pages

For the user - Allows for creating a hierarchy of pages, manage publishing, and displaying the pages in the site’s
navigation.

For the Developer - Allows for creating custom Content for Pages, which can be customized on a per-project-basis.

2.2.1 A quick overview

Pages

In our pages app, a Page is nothing more than a container for content. A Page does have some of it’s own field and
attributes, but these are mostly to set certain publication details etc.

Page Content

Page Content is a seperate model from pages, and this is the actual content for the page. Two of these models already
exist within pages, and you are free to use them out-of-the-box, but you can easilly create your own if you need more
control over content in your pages.

2.2.2 Requirements

• django-mptt

• django-appregister

2.2.3 Add ostinato.pages to your project

Start by adding the app to your INSTALLED_APPS

INSTALLED_APPS = (
...

'ostinato',
'ostinato.pages',
'mptt', # Make sure that mptt is after ostinato.pages

...
)

Now add the ostinato.pages.urls to the end of your urlpatterns. It is important to add this snippet right at the
end of the urls.py so that pages doesn’t take priority over your other urlpatterns. That is of course unless you want
it to, in which case you can add it where-ever you wish.

urlpatterns += patterns('',
url(r'^', include('ostinato.pages.urls')),

)

Remember to run syncdb after you’ve done this.

That’s it, you now have a basic Pages app. We cannot do anything with it yet, since we first need to create actual
templates and content. We’ll do this in the next section.

Note: Publication and Timezones
Django 1.4 changed how timezones are treated. So if you mark a page as published, please remember that it is
published, relative to the timezone you specified in your settings.py.

6 Chapter 2. Introduction

django-ostinato Documentation, Release 1.1

2.2.4 Creating and registering page content

Ok, so lets say the client wants a landing page that contains a small intro and content, and a general page that
contains only content. It was decided by you that these would all be TextFields.

Lets create these now. You need to place these in your app/project models.py.

1 from django.db import models
2 from ostinato.pages.models import PageContent
3 from ostinato.pages.regitry import page_content
4

5 @page_content.register
6 class LandingPage(PageContent): # Note the class inheritance
7 intro = models.TextField()
8 content = models.TextField()
9

10 @page_content.register
11 class GeneralPage(PageContent):
12 content = models.TextField()

As you can see, these are standard django models, except that we inherit from
ostinato.pages.models.PageContent.

You also need to register your model with the page_content registry, as you can see on lines 5 and 10.

Note: Since the content you just created are django models, you need to remember to run syncdb.

If you load up the admin now, you will be able to choose a template for the page.

2.2.5 Displaying page content in the templates

By default the template used by the page is determined by the page content. The default template location is
pages/<content_model_name>.html. So the templates for our two content models (which you’ll need to
create now) are:

• pages/landing_page.html

• pages/general_page.html

Note: You can override these templates by using the ContentOptions meta class in your page content model.

class GeneralPage(PageContent):
content = models.TextField()

class ContentOptions:
template = 'some/custom/template.html'

Lets see how we can access the content in the template.

The page view adds page to your context, which is the current page instance. Using that it’s very easy to do something
like this:

<h1>{{ page.title }}</h1>
<p class="byline">Author: {{ page.author }}</p>

2.2. ostinato.pages 7

django-ostinato Documentation, Release 1.1

That’s all fine, but we have content for a page as well, which is stored in a different model. We include a field on the
page called contents, which will get the related page content for you.

In the following example, we assume that you are editing your landing_page.html.

<p>{{ page.contents.intro }}</p>
<p>{{ page.contents.content }}</p>

Note: You can also access the content using the django related field lookups, but this method is very verbose and
requires a lot of typing. The related name is in the format of, <app_label>_<model>_content.

<p>{{ page.myapp_landingpage_content.intro }}</p>
<p>{{ page.myapp_landingpage_content.content }}</p>

2.2.6 Creating a custom view for your content

There are cases where you may want to have a custom view to render your template rather than just using the default
view used by ostinato.pages.

One use case for this may be that one of your pages can have a contact form. So you will need a way to add this form
to the page context. You also want this page to handle the post request etc.

First you create your view. Note that ostinato.pages makes use of django’s class based views. If you haven’t
used them before, then it would help to read up on them.

from ostinato.pages.views import PageView

class ContactView(PageView): # Note we are subclassing PageView

def get(self, *args, **kwargs):
c = self.get_context_data(**kwargs)
c['form'] = ContactForm()
return self.render_to_response(c)

def post(self, *args, **kwargs):
c = self.get_context_data(**kwargs)
Handle your form ...
return http.HttpResponseRedirect('/some/url/')

In the example above, we created our own view that will add the form to the context, and will also handle the post
request. There is nothing special here. It’s just the standard django class based views in action.

One thing to note is that our ContactView inherits from PageView (which in turn inherits from
TemplateView). You don’t have to inherit from PageView, but if you don’t, then you need to add the page
instance to the context yourself, whereas PageView takes care of that for you.

Next we need to tell the page content model to use this view when it’s being rendered. We do this in the
ContentOptions meta class for the page content.

Using our LandingPage example from earlier, we change it like so:

1 from django.db import models
2 from ostinato.pages.models import PageContent
3

4 class LandingPage(PageContent):
5 intro = models.TextField()
6 content = models.TextField()
7

8 Chapter 2. Introduction

django-ostinato Documentation, Release 1.1

8 class ContentOptions:
9 view = 'myapp.views.ContactView' # Full import path to your view

2.2.7 Custom forms for Page Content

ostinato.pages also allows you to specify a custom form for page content. You do this in the ContentOptions
class like the example below:

1 from django.db import models
2 from ostinato.pages.models import PageContent
3

4 class LandingPage(SEOContentMixin, PageContent):
5 intro = models.TextField()
6 content = models.TextField()
7

8 class ContentOptions:
9 form = 'myapp.forms.CustomForm' # Full import path to your form

As you can see we just added that at the end. Just create your custom form on the import path you specified, and the
admin will automatically load the correct form for your page content.

2.2.8 Creating complex page content with mixins

Sometimes you may have two different kinds of pages that share other fields. Lets say for example we have two or
more pages that all needs to update our meta title and description tags for SEO.

It is a bit of a waste to have to add those two fields to each of our content models manually, not to mention that it
introduces a larger margin for errors.

We use mixins to solve this:

1 from django.db import models
2 from ostinato.pages.models import PageContent
3

4 class SEOContentMixin(models.Model): # Note it's a standard model...
5 keywords = models.CharField(max_length=200)
6 description = models.TextField()
7

8 class Meta:
9 abstract = True # ...and _must_ be abstract

10

11

12 class LandingPage(SEOContentMixin, PageContent):
13 intro = models.TextField()
14 content = models.TextField()

The two points you have to be aware of here:

1. The mixin should be a normal django model

2. The mixin must be abstract

2.2.9 Custom Statemachine for Pages

ostinato.pages.workflow provides a default statemachine that is used by the page model. Sometimes, you
may want to create a different workflow for the pages based on client requirements.

2.2. ostinato.pages 9

django-ostinato Documentation, Release 1.1

To do this, you just create your custom statemachine as mentioned in the ostinato.statemachine documenta-
tion, and then tell ostinato.pages which class to use by adding the following in your settings.py:

OSTINATO_PAGES_WORKFLOW_CLASS = "myapp.customworkflow.SomeWorkflow"

When creating your custom workfow, do remember that the Page state is stored as an IntegerField, so make sure that
you use the IntegerStatemachine so subclass your own statemachine class.

2.2.10 Extra Inline Fields for a Page in the Admin

There are cases where you want a specific page to have extra inline fields, based on the chosen template. We have
provided you with this capability through the PageContent model.

First you need to create the model that should be related to your page.

1 from django.db import models
2 from ostinato.pages.models import Page
3

4 class Contributor(models.Model):
5 page = models.ForeignKey(Page)
6 name = models.CharField(max_lenght=50)

Next, you need to create your inline class (usually done in admin.py).

1 from django.contrib import admin
2

3 class ContributorInline(admin.StackedInline):
4 model = Contributor

Right, after a quick syncdb, we are ready to add this to our page content. Lets say that we want to add contributors to
our LandingPage from earlier:

1 ...
2

3 class LandingPage(SEOContentMixin, PageContent):
4 intro = models.TextField()
5 content = models.TextField()
6

7 class ContentOptions:
8 admin_inlines = ['myapp.admin.ContributorInline']
9 ...

If you load up the django admin now, and edit a Landing Page, you should see the extra inline model fields below your
PageContent.

To access the related set in your template, just do it as normal.

{% for contributor in page.contributor_set.all %}
{{ contributor.name }}
{% endfor %}

2.2.11 Template tags and filters

ostinato.pages comes with a couple of tempalate tags and filters to help with some of the more common tasks.

navbar(for_page=None)

A inclusion tag that renders the navbar, for the root by default. It will render all child pages for the node. This tag will
only render pages that has show_in_nav selected and is published.

10 Chapter 2. Introduction

django-ostinato Documentation, Release 1.1

{% load pages_tags %}
{% navbar %}

This inclusion tag uses pages/navbar.html to render the nav, just in case you want to customize it.

This inclusion tag can also take a extra arument to render the children for a specific page.

{% load pages_tags %}
{% navbar for_page=page %}

breadcrumbs(for_page=None, obj=None)

This tag will by default look for page in the context. If found it will render the breadcrumbs for this page’s ancestors.

{% load pages_tags %}
{% breadcrumbs %}

If you want to manually specify the page for which to render the breadcrumbs, you can do that using for_page.

{% load pages_tags %}
{% breadcrumbs for_page=custom_page %}

Sometimes you may have a object that does not belong to the standard page hierarchy. This could be a model like a
BlogEntry, but when viewing the detail template for this entry, you may still want to relate this object to a page. For
this you can use obj.

{% load pages_tags %}
{% breadcrumbs for_page=blog_landingpage obj=entry %}

One thing to note about the custom object is that the model must have a title attribute, and a
get_absolute_url() method.

filter_pages(**kwargs)

This tag will filter the pages by **kwargs and return the the queryset.

{% load pages_tags %}
{% filter_pages state=5 as published_pages %}
{% for p in published_pages %}

<p>{{ p.title }}</p>
{% endfor %}

get_page(**kwargs)

Same as filter_pages, except that this tag will return the first item found.

{% load pages_tags %}
{% get_page slug='page-1' as mypage %}
<h1>{{ mypage.title }}</h1>

2.2.12 Multi Site Support

Ostinato pages can be used for multiple sites. We suggest you read the django documentation on the sites framework
for a background on how we use it here.

Every site will have it’s own Tree. So you create one root page for every site, and then all descendants will belong to
this site.

Additionally, in the settings.py file for each site, you need to specify which TreeID belongs to that site.

2.2. ostinato.pages 11

django-ostinato Documentation, Release 1.1

OSTINATO_PAGES_SITE_TREEID = 1 will tell tell your project that the current projects pages are all located in
the first Tree.

2.2.13 Pages Settings

OSTINATO_PAGES_SETTINGS = {
'CACHE_NAME': 'default',
'DEFAULT_STATE': 5,

}

2.3 ostinato.statemachine

2.3.1 Overview

Ostinato includes a statemachine that will allow you to create complex workflows for your models. A common
workflow, for example, is a publishing workflow where an item can be either private or public. The change from
the one state to the next is called a transition.

In ostinato our main aim was to have the ability to “attach” a statemachine to a model, without having to change any
fields on that model. So you can create your States and StateMachines completely independent of your models, and
just attach it when needed.

Ok, lets build an actual statemachine so you can see how it works. For this example we will create the following
statemachine:

For our example we will assume you are creating a statemachine for the following model:

class NewsItem(models.Model):
title = models.CharField(max_length=150)
content = models.TextField()
publish_date = models.DateTimeField(null=True, blank=True)
state = models.CharField(max_length=50, default='private')

We start by creating our States...

1 from ostinato.statemachine import State, StateMachine
2

3 class Private(State):
4 verbose_name = 'Private'
5 transitions = {'publish': 'public'}
6

7 class Public(State):
8 verbose_name = 'Public'
9 transitions = {'retract': 'private', 'archive': 'archived'}

10

11 class Archived(State):

12 Chapter 2. Introduction

django-ostinato Documentation, Release 1.1

12 verbose_name = 'Archived'
13 transitions = {}

This is simple enough. Every state is a subclass of ostinato.statemachine.core.State and each of these
states specifies two attributes.

• verbose_name is just a nice human readable name.

• transitions is a dict where the keys are transition/action names, and the values is the target state for
the transition.

Now we have to glue these states together into a statemachine.

1 class NewsWorkflow(StateMachine):
2 state_map = {'private': Private, 'public': Public, 'archived': Archived}
3 initial_state = 'private'

• state_map is a dict where keys are unique id’s/names for the states; values are the actual State sub-
class

• initial_state is the starting state key

Thats all you need to set up a fully functioning statemachine.

Lets have a quick look at what this allows you to do:

>>> from odemo.news.models import NewsItem, NewsWorkflow

We need an instance to work with. We just get one from the db in this case
>>> item = NewsItem.objects.get(id=1)
>>> item.state
u'public'

Create a statemachine for our instance
>>> sm = NewsWorkflow(instance=item)

We can see that the statemachine automatically takes on the state of the
newsitem instance.
>>> sm.state
'Public'

We can view available actions based on the current state
>>> sm.actions
['retract', 'archive']

We can tell the statemachine to take action
>>> sm.take_action('retract')

State is now changed in the statemachine ...
>>> sm.state
'Private'

... and we can see that our original instance was also updated.
>>> item.state
'private'
>>> item.save() # Now we save our news item

2.3. ostinato.statemachine 13

django-ostinato Documentation, Release 1.1

2.3.2 Custom Action methods

You can create custom action methods for states, which allows you to do extra stuff, like updating the publish_date.

Our example NewsItem already has a empty publish_date field, so lets create a method that will update the
publish date when the publish action is performed.

1 from django.utils import timezone
2

3 class Private(State):
4 verbose_name = 'Private'
5 transitions = {'publish': 'public'}
6

7 def publish(self, **kwargs):
8 if self.instance:
9 self.instance.publish_date = timezone.now()

Now, whenever the publish action is called on our statemachine, it will update the publish_date for the instance
that was passed to the StateMachine when it was created.

Note: The name of the method is important. The State class tries to look for a method with the same name as the
transition key.

You can use the kwargs to pass extra arguments to your custom methods. These arguments are passed through from
the StateMachine.take_action() method eg.

sm.take_action('publish', author=request.user)

2.3.3 Admin Integration

Integrating your statemachine into the admin is quite simple. You just need to use the statemachine form factory
function that generates the form for your model, and then use that form in your ModelAdmin.

1 from odemo.news.models import NewsItem, NewsWorkflow
2 from ostinato.statemachine.forms import sm_form_factory
3

4

5 class NewsItemAdmin(admin.ModelAdmin):
6 form = sm_form_factory(NewsWorkflow)
7

8 list_display = ('title', 'state', 'publish_date')
9 list_filter = ('state',)

10 date_hierarchy = 'publish_date'
11

12

13 admin.site.register(NewsItem, NewsItemAdmin)

Lines 2 and 6 are all that you need. sm_form_factory takes as it’s first argument your Statemachine Class.

2.3.4 Custom state_field

The statemachine assumes by default that the model field that stores the state is called, state, but you can easilly tell
the statemachine (and the statemachine form factory function) what the field name for the state will be.

• Statemachine - sm = NewsWorkflow(instance=obj, state_field=’field_name’)

• Form Factory - sm_form_factory(NewsWorkflow, state_field=’field_name’)

14 Chapter 2. Introduction

django-ostinato Documentation, Release 1.1

2.4 ostinato.blog

2.4.1 Overview

A blog is a very common application that are installed for most websites these days. There are a couple of common
features that most blogging apps provide, but the use cases of every project can be quite different.

Because of this, we decided to bundle a simple skeleton for building your own blog, and this is what
ostinato.blog does.

2.4.2 How to use ostinago.blog

Start by creating your own blogging application, and within it your own BlogEntry model.

from ostinato.blog.models import BlogEntryBase

class Entry(BlogEntryBase):
pass

BlogEntryBase provides the following fields for your Entry Model.

title = models.CharField(max_length=255)
slug = models.SlugField(unique=True)
content = models.TextField()
state = models.IntegerField(default=1)
author = models.ForeignKey(User)
created_date = models.DateTimeField(auto_now_add=True)
modified_date = models.DateTimeField(auto_now=True, null=True, blank=True)
publish_date = models.DateTimeField(null=True, blank=True)
archived_date = models.DateTimeField(null=True, blank=True)

allow_comments = models.BooleanField(default=True)

Those are the most basic fields that any blog might require, but of course you can extend this to include any other
fields that you may require.

from ostinato.blog.models import BlogEntryBase

class Entry(BlogEntryBase):

contributors = models.ManyToManyField(User, null=True, blank=True)
preview_image = models.Imagefield(upload_to='uploads', null=True, blank=True)

So now you have a blog entry with two extra fields.

2.4.3 Using the custom manager

published() - Returns a queryset containing published blog entries

2.4.4 Wrapping up

Since blogs can vary in use case so much, we have decided to provide only the bare minimum to get you going and
you still need to create your own urls, views and templates.

2.4. ostinato.blog 15

django-ostinato Documentation, Release 1.1

The reason for this approach is that we still wish to maintain flexability, and we feel that this is the best way to approach
this.

2.5 ostinato.contentfilters

The ostinato.contentfilters app provides you with a easy way to apply a list of filters to content, which is
rendered in your templates. The basic functionality is the same as standard django template filters, except that they are
appllied as a group. This is handy if you want to apply a whole range of filters to a single piece of content.

We also include a couple of filters for some common use cases.

2.5.1 Writing a Contentfilter

Start by creating a standard django template tag library. In our case we will call this custom_filters.py.

from django import template
register = template.Library()

Now we need to create our filter. For this example we will create a simple filter that will convert the content to
uppercase.

from django import template
from ostinato.contentfilters import ContentMod

register = template.Library()

def to_upper(content):
return content.upper()

ContentMod.register('upper', to_upper)

As you can see you just create a basic function, which takes a single argument, content. You then do some process-
ing on your content, and return the result.

The last thing you need to do is register your modifier with ostinato.contentfilters.ContentMod. The
first argument here is the unique name for the filter. The second argument is the function to use.

2.5.2 Using the filters in your templates

Now that you have your content filters registered, you can use them in your templates.

{% load content_filters custom_filters %}
{{ 'some lowercase content'|modify }}

Firstly note that we need to load both template tag libraries for content_filters and custom_filters.

Secondly you will see we just applied a single modify filter to our content. Calling modify without any arguments
will run through all registered filters.

You can apply specific filters by passing it as arguments to modify:

{% load content_filters custom_filters %}
{{ 'some lowercase content'|modify:"upper,another_filter" }}

You can also tell it to exclude filters. The following will use all registered filters, except for upper and youtube.
Note the exclamation mark at the start of the filter list.

16 Chapter 2. Introduction

django-ostinato Documentation, Release 1.1

{% load content_filters custom_filters %}
{{ 'some lowercase content'|modify:"!upper,another_filter" }}

2.5.3 Default content filters included with ostinato.contentfilters

• youtube - Searches for a youtube url in the content, and replaces it with the html embed code.

• snip - Searches for a string, {{{snip}}} in the content, and if found it truncates the content at that
point.

• hide_snip - Searches for a string, {{{snip}}} in the content, and if found, removes it from the con-
tent.

2.5. ostinato.contentfilters 17

django-ostinato Documentation, Release 1.1

18 Chapter 2. Introduction

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

19

	Requirements
	Introduction
	The Demo Project
	ostinato.pages
	ostinato.statemachine
	ostinato.blog
	ostinato.contentfilters

	Indices and tables

